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Abstract

  ISS (Inverse Scattering Series) internal multiple 
attenuating algorithm can predict internal multiple with 
exact phase and approximate amplitude with spike data. 
However, the wave is decaying and broadening if 
propagating in attenuating medium, which is expressed by 
Quality Factor (Q). In this paper, the ISS internal multiple 
attenuator is analytically and numerically tested with 
absorptive data. The results show that if the events are 
isolated, the predicted multiple has a right phase and 
approximate amplitude which worse than that with ideal 
input data. 

1  Introduction

ISS internal multiple attenuation algorithm will have a significant effect if the 
events in the data are sharpened. In order to improve the result, preprocessing 
works, including wavefield separation and deconvolution, can not be ignored. 
However, in the absorptive earth, the wavefield will be decayed and broadened 
even with preprocessing. Q compensation based on ISS show its satisfying 
effectiveness ( see e.g. Innanen and Weglein (2003), Innanen and Weglein 
(2005), Innanen and Lira (2008)). For data with Q absorption, ISS internal 
multiple attenuator is first tested in this paper. A two-reflector model with 
constant Q in each layer is used for analytical and numerical verification. The 
result indicate that the prediction is with a right phase and an approximate 
amplitude if events are isolated; however, comparing with the data without Q, 



the amplitude is worth for the former case. 

2  Q definition and wavefield representation

2.1  Q definition

Based on Aki and Richards (2002), the Q is used to represent the energy lost for 
wave filed propagating in one wave length. Q can be defined as

(1)
where E is the energy of wave field, and ΔE is the energy lost in one wavelength 
propagation. With the definition of Q, the amplitude of wave field A along 
propagation direction x can be represented as 

(2)
where  is the amplitude without absorption influence. ω is the frequency, and c is 
the velocity of the wave field. The exponentially decaying term causes the 
attenuation and results in a wave with finite width, rather than the original spike. 
It’s not difficult to understand when Q decreases, the amplitude will decrease; 
otherwise, when Q increases to infinity, there’s no absorption influence.

Here we suppose Q is frequency independent. In order to guarantee the 
amplitude attenuates in the negative frequency, it’s convenient to replace ω 
with , then 

(3)

2.2  Wavefield representation with layered model 

Following the definition in the previous section, we can analytically express the 
wavefield. Take a two-half space 1D model with an interface at depth  as an 
example (Figure 1), consider there are different velocities c, densities (ϱ ) and Q 
values above and below the interface. The source is located at depth , above the 
interface.

 

Figure 1: A two half space model with an interface at depth 

The 1D normal incident plane waves can be represented as: 



[Sorry. Ignored \begin{aligned} ... \end{aligned}]
) (4)

where  and  are wavefields above and below the interface separately, R is 
reflection coefficient and T is the transmission coefficient.  is composed by 
direct wave and reflected wave, both of which have exponential decaying terms; 
similarly,  is the transmitted wave under Q influence. 

If we define the wavenumber as 

[Sorry. Ignored \begin{aligned} ... \end{aligned}]
) (5)

Then the wavefieds can be rewritten as

[Sorry. Ignored \begin{aligned} ... \end{aligned}]
) (6)

which are in the same form as the wavefileds expression without absorption, 
except the wavenumbers here are complex values. 

By using the boundary conditions that pressures and displacements are 
continuous along the boundary, the reflection and transmission coefficients can 
be determined. 

[Sorry. Ignored \begin{aligned} ... \end{aligned}]
) (7)

R and T here are both complex values.

3  Analytical test of ISS internal multiple attenuation algorithm on data 
with Q

In this section, I will use the attenuated data as input to test the ISS internal 
multiple attenuation algorithm analytically. Take a two-reflector model as an 
example, the parameters are listed on Figure 2, and both the depths of source 
and receiver are assumed to be 0. 



 

Figure 2: A two-reflector model.  and  are primaries from the first and second 
interface separately.

For 1D model and the 1D normal incident plane wave, two primaries in the 
data can be expressed as: 

[Sorry. Ignored \begin{aligned} ... \end{aligned}]
) (8)

The migrated data in pseudo depth domain will be input to the internal 
multiple attenuation integral algorithm. First, the variable should be changed 
from ω to , then 

[Sorry. Ignored \begin{aligned} ... \end{aligned}]
) (9)

Then, Fourier Transform is applied over  to pseudo depth domain. We can get 

[Sorry. Ignored \begin{aligned} ... \end{aligned}]
) (10)

Until now , which will be substituted into ISS internal multiple attenuator to 
predict internal multiple .

Based on Weglein et al. (2003), the 1D ISS internal multiple attenuation 
algorithm is 

(11)
where ε is used to make sure the events satisfy lower-higher-lower relation, 

and its value is chosen based on the length of wavelet. 
For this model, there are two primaries in the data. Now I suppose these two 

events are isolated (Figure 3). The pseudo depths of the first event is  with a 
length of 2a, whereas the pseudo depth of the second event is  with a length of 



2b. For ε in eqn.11 , it is chosen to satisfy ε≥max(2a,2b) and .

 

Figure 3: data in pseudo depth domain with two primaries

Kaplan et al. (2004) change the integral order of eqn.11, and rewrite the 
formula as :

(12)
Since , eqn. 12 can be divided into two parts:

[Sorry. Ignored \begin{aligned} ... \end{aligned}]
(13)

For (13.1), the integral limitation of z is . Consider the lower limit of the 
integral of z’ and the constrain of ε,

,
and 
.
We can see the lower limit of second integral should be after the end of the 

first event and before the beginning of the second event, meaning in [z+ε,∞), the 
kernel of second integral . 

So 

(14)
Similarly, for (13.2), the integral limitation of z is . Consider the lower limit 

of the integral of z’ and the constrain of ε,
. 
The lower limit of second integral should be after the end of the second 

event, meaning in [z+ε,∞), the kernel of second integral .



So 

(15)
Now 

(16)
Since the actual first order internal multiple in  domain is 

(17)
The relation between predicted and actual multiple is 

(18)
By using the ISS internal multiple algorithm, the multiple can be predicted 

with a right phase and approximated amplitude. 
If the data is without Q influence, then from Weglein et al. (2003), we can get 

(19)
Comparing eqn.18 and eqn.19, it’s not difficult to know the predicted 

amplitude is worse for input data with Q relative to that without Q. 

4  Numerical test on input data with Q
In this section, a two-reflector 1D model (Figure 2) will be used as an example to numerically 
test the ISS internal multiple attenuator. The parameters are listed in table 1. 

 

Table 1: two-reflector model parameters

 Layer Number Velocity(m/s) Density(kg/) Travel Times (s) Q Value
 1 1500 1000 0.5 ∞(5000)
 2 4000 1000 1.1 100
 3 2000 1000

 

By using the parameters of table 1, based on eqn.5-7, eqn.9 and eqn.17, the existing 1D plane 
wave modeling code of M-OSRP is modified and the synthetic data involving Q value of each 
layer is generalized. The data includes all the primaries and the first order internal multiples. 



  

Figure 4: Numerical test result. left: input data; middle: input data  (blue line) and predicted 
multiple  (red line); right: actual internal multiple (blue line) and predicted internal multiple (red 
line) 

Substitute the input data  (Figure 4, left blue line) into ISS internal multiple attenuation 
algorithm, we can get predict internal multiple  (Figure 4 left red line). Actually the red line in 
Figure 4 left part is -, since we can see from eqn.18 that the polarity of  is different with actual 
internal multiple. In order to more clearly show the result, the predicted multiple and actual 
multiple are compared separately, shown in Figure 4 right part. From the result, we can further 
realize the prediction result matches well in phase and approximately in amplitude. 

5  Conclusion and future plan
In this paper, ISS internal multiple attenuator is tested analytically and numerically using Q 
influenced input data , with the conclusion that if events are not interfering seriously, the 
prediction will have a right phase and approximate amplitude. However, the prediction is worth 
than that without Q from analytical result. So Q compensation is important for ISS internal 
multiple attenuator even eliminator to have more effective and significant result. 
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